B.SC. SIXTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course Code: SH/MTH/604/DSE-4

Full Marks: 40

Time: 2 Hours

Course Title: Mathematical Modelling

Course ID: 62117

The figures in the margin indicate full marks

Symbols and Notations have their usual meaning

- 1. Answer any **five** from the following questions:
 - (a) Determine the interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$.
 - (b) Find $L{f(t)}$, where L is the Laplace operator and $f(t) = t^n$.
 - (c) Show that $L(e^{-t} \cos t) = \frac{s+1}{s^2+2s+2}$.
 - (d) Write down the Bessel Equation of order μ .
 - (e) Define Queue in a Queuing System?
 - (f) What is Sensitivity analysis?
 - (g) Write down the Canonical form of Simplex method.
 - (h) What is harbor System of Queuing Model?
- 2. Answer any four from the following questions:
 - (a) Find Power series solution of Legendre's equation.
 - (b) Solve the initial value problem y'' + 7y' + 12y = 0; y(0) = 1 and y'(0) = 2 by Laplace transform method.
 - (c) The optimal table of the LPP
 - $Ma \, x \, Z = 2 \, x_1 + 3 \, x_2 + 0 \, x_3 + 0 x_4$

Subject to the constraints

- $x_1 + 2x_2 + x_3 = 2$
- $2x_1 x_2 + x_4 = 3$
- $3x_1 + x_2 + x_5 = 5$
- $x_1, x_2, x_3, x_4, x_5 \ge 0;$

where x_3 , x_4 , x_5 are slack variables, is given below.

 $2 \times 5 = 10$

 $5 \times 4 = 20$

Cost →				2	3	0	0	0		
Variable ->				X ₁	x ₂ x ₃		K ₃	X ₄		X ₅
Table	C_{B}	Basic	X_{B}	α_1	α	² (α_3	α	4	α_{5}
No.		variable								
0	3	<i>x</i> ₂	1/5	0	1	2/5	-2	1/5	0	
	2	X.	8/5	1	0	1/5		2/5	0	
	0		0	0	0	-1	-	-1	1	
		x_5								
		$c_j - Z_j$	<u>.</u>	0	0	-8/5	-	1/5	0	

Using the sensitivity analysis, find the solution to the new problem obtained by deleting the third constraint $3x_1 + x_2 \le 5$.

(d) Solve using simplex method

Maximize $Z = 3 x_1 + 2 x_2 + x_3$ Subject to the constraints $2 x_1 + x_2 + x_3 \le 150$ $2 x_1 + 2 x_2 + 8 x_3 \le 200$ $2 x_1 + 3 x_2 + x_3 \le 320$ $x_1, x_2, x_3 \ge 0.$

- (e) In an infinite storage queue system with one server (M/M/1): (FCFS/∞)
 Derive the following expressions (i) Expected number of customer in the system,
 - (ii) Expected number of customer in the queue, (iii) Expected waiting time in the system. 2+2+1

 $10 \times 1 = 10$

- (f) Find $L^{-1} \left[-\frac{2}{s^2} + \frac{1}{s+1} \right]$.
- 3. Answer any **one** from the following questions:

(a) (i) Show that
$$L \{ y'' \} (s) = s^2 Y(s) - sy(0) - y'(0)$$
.

(ii) State and Prove the Convolution theorem of Laplace Transform. 5+5

(b) (i) If $a \equiv b \mod n$ and $c \equiv d \mod n$ then show that

 $a+c \equiv b+d \mod n$ and $ac \equiv bd \mod n$.

(ii) Find
$$17^{341} \mod 5$$
. $5+5$