B.Sc. 5th Semester (Programme) Examination, 2020-21

Subject: PHYSICS

Course ID: 52418

Course Code : SP/PHS/501/DSE-1A

Course Title: Advanced Mathematical Physics

Time: 2 Hour

Full Marks: 40

 $(2 \times 5 = 10)$

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* of the following questions:

- (a) Write down some applications of Gaussian Distribution.
- (b) Show that the gradient of a scaler field is a covariant vector.
- (c) Discuss kernel of a function.
- (d) Show that any tensor of rank 2 can be expressed as the sum of a symmetric and antisymmetric tensors of rank 2.
- (e) Show that $\frac{\partial x^p}{\partial x^q} = \delta_q^p$.
- (f) Prove that kronecker delta is a mixed tensor of rank 2.
- (g) Let G be an abelian group. Prove that the subset $H = \{g \in G : g^2 = e (identity element)\}$ forms a subgroup of G.
- (h) There are 3 arrangements of the word DAD, namely DAD, ADD, and DDA. How many arrangements are there of the word PROBABILITY?

2. Answer *any four* of the following questions: (5×4=20)

- (a) Discuss briefly homomorphism and isomorphism of groups.
- (b) Define stress, strain and elasticity tensors.
- (c) Show that the set Z of all integers form a group with respect to binary operation *

defined by a * b = a + b + 1 $\forall a, b \in Z$

is an abelian group.

(d) (i) Explain continuous and discrete probability distributions. (ii) State Baye's

theorem.

- 3+2=5
- (e) Prove that the angles θ_{12} , θ_{23} and θ_{31} between the coordinates curves in a three dimensional coordinate system are given by

$$\cos \theta_{12} = \frac{g_{12}}{\sqrt{g_{11}g_{22}}}$$
, $\cos \theta_{23} = \frac{g_{23}}{\sqrt{g_{22}g_{33}}}$, $\cos \theta_{12} = \frac{g_{31}}{\sqrt{g_{33}g_{11}}}$

- (f) Two dice are rolled
 - A= 'sum of two dice equals 3'
 - B= 'sum of two dice equals 7'
 - C= 'at least one of the dice shows a 1'
 - (a) What is (A|C)?
 - (b) What is P(B|C)
 - (c) Are A and C independent? 2+2+1=5

 $(10 \times 1 = 10)$

3. Answer *any one* of the following questions:

- a) (i) Distinguished between symmetric and antisymmetric tensors. (ii) What do you mean by contraction of a tensor? (iii) A covariant tensor has components xy, 2y- z², xz in rectangular co-ordinates. Find its covariant components in spherical co-ordinates.
 (iv) What is Einstein's summation convention? 4+2+3+1=10
- **b**) Let $X \sim N(\mu, \sigma^2)$ for some $\mu \in \mathbf{R}$, $\sigma \in \mathbf{R} > 0$, where N is the Gaussian distribution. Prove that $var(X) = \sigma^2$.