B.SC. FIFTH SEMESTER (HONS.) EXAMINATION 2021

Course ID: 52112

Time: 2 Hours

Course Code: SH/MTH/502/C-12

Subject: MATHEMATICS

Course Title: Group Theory – II

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

- 1. Answer *any FIVE* of the following questions: $(2 \times 5 = 10)$
 - **a)** Find the kernel of a group action.
 - b) Show that a cyclic group of order 4 cannot be expressed as an internal direct product of two subgroups of order 2.
 - **c)** Find the group $Aut(\mathbb{Z}_8)$.
 - **d)** Show by an example that the external direct product of two cyclic groups may not be cyclic.
 - e) Let G be a group and $a \in G$. Then prove that $Z(G) \subseteq C(a)$.
 - f) Define a*p*-group with example.
 - **g)** Let Q_8 denote the quaternion group of order 8. Find $Z(Q_8)$.
 - h) Let *G* be a non-commutative group of order p^3 where *p* is a prime. Then prove that |Z(G)| = p.
- 2. Answer *any FOUR* of the following questions: $(5 \times 4 = 20)$
- **a)** Prove that every group of order $3^2 \cdot 5 \cdot 7$ is abelian.
- **b)** (i) Show that $|\operatorname{Aut}(\mathbb{Z}_2 \times \mathbb{Z}_2)| = 6$.

(ii) Prove that the characteristic subgroups are normal. (3+2)

- c) (i) Let G be a finite p-group with |G| > 1. Then prove that |Z(G)| > 1.
 (ii) Let G be a finite group of order pⁿ where p is a prime and n ≥ 1. Prove that any subgroup of G of order pⁿ⁻¹ is a normal subgroup of G. (3+2)
- d) (i) Prove that S_3 is not isomorphic to a direct product of two non-trivial groups.
 - (ii) Prove that $(\mathbb{Q}, +)$ is not isomorphic to a direct product of two non-trivial groups. (3+2)
- e) Determine which of the following cannot be the class equation of a group:

(i) 10 = 1+1+1+2+5 (ii) 4 = 1+1+2 (iii) 8 = 1+1+3+3 (iv) 6 = 1+2+3.

f) (i) Show that a Sylow 11-subgroup of G of order 44 is normal in G.

(ii) How many elements of order 7 are there in a simple group of order 168? (2+3)

3. Answer any ONE of the following questions:

$(10 \times 1 = 10)$

- a) (i) Let G be a finite group and let N be a normal abelian subgroup of G. Suppose that the orders of $G/_N$ and Aut(N) are relatively prime. Prove that N is contained in the center of G.
 - (ii) Show that a group of order 96 has a normal subgroup of order 16 or 32.
 - (iii) Find the order of each element in the group $D_4 \times \mathbb{Z}_2$. (5+3+2)
- b) (i) Let G be a group and S be a G-set. Then show that [G: G_a] = |[a]| ∀ a ∈ S.
 (ii) If G is a simple group of order 60, then show that G ≅ A₅. (3+7)
