B.SC. FOURTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course Code: SH/MTH/401/C-8

Course Title: Riemann Integration and Series of Functions

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

- 1. Answer any five of the following questions:
 - a) Evaluate: $\lim_{x\to 3} \frac{1}{x-3} \int_3^x exp(\sqrt{1+t^2}) dt$, if it exists.
 - b) Examine the convergence of the improper integral $\int_{e^2}^{\infty} \frac{dx}{x \log(\log x)}$.
 - c) Let $f_n(x) = xe^{-nx}$, $x \ge 0$. Examine the uniform convergence of $\{f_n\}_n$.
 - d) Prove or disprove: "Given that $f:[0,1] \rightarrow [0,1]$ is Riemann integrable on [0,1], the function g on [0,1] defined by $g(x) = \frac{1}{2-f(x)}$, $x \in [0,1]$ is bounded and Riemann-integrable on [0,1]."

e) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$, where $a_{2n} = \frac{1}{3^n}$ and

$$a_{2n+1} = \frac{1}{3^{n+1}}, (n = 1, 2, 3, ...).$$

f) If
$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$
, then find $\lim_{x \to 0} f(x)$.

- g) Discuss the applicability of the second mean value theorem to the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \cos x \, dx$.
- h) If f is bounded and integrable on $[-\pi,\pi]$ and if a_n , b_n are its Fourier coefficients, then show that $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges.
- 2. Answer any four of the following questions:
- a) (i) Let $f: [0,1] \to \mathbb{R}$ be such that

$$f(x) = \begin{cases} \frac{1}{5^n}, & \text{for } \frac{1}{5^n} < x \le \frac{1}{5^n}, & n = 0, 1, 2, \dots \\ 0, & \text{for } x = 0 \end{cases}$$

Evaluate $\int_0^1 f$, if the Riemann integral exists.

(ii) Evaluate: $\lim_{x \to 0} \frac{1}{x^2} \int_{x^2}^{x^4} \sin(\sqrt{t}) dt.$ 3+2

b) (i) Obtain the Fourier series of f in $[-\pi, \pi]$, where f(x) = x sinx and deduce that

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} + \cdots$$

(ii) Let $f_n(x) = xe^{-nx}$, $x \ge 0$. Examine the uniform convergence of $\{f_n\}_n$. 3+2

 $(2 \times 5 = 10)$

(5×4 = 20)

Time: 2 Hours

Course ID: 42111

c) (i) Let $f_n(x) = \frac{nx}{1+nx}$, $x \in [0,1]$, n = 1,2,3,... Is the sequence $\{f_n\}_n$ converges uniformly on [0,1]. Justify your answer.

(ii) Let
$$f_n(x) = \begin{cases} nx^2, & \text{when } 0 \le x \le \frac{1}{n} \\ x, & \text{when } \frac{1}{n} \le x \le 1; \end{cases}$$
 for $n = 2, 3, 4, \dots$ Find the limit function of $\{f_n\}_n$ on [0,1].

d) Prove that $\sum \frac{\sin n\theta}{n^p}$ converges uniformly for all values of p > 0 in an interval [$\alpha, 2\pi - \alpha$), $0 < \alpha < \pi$.

e) (i) Find
$$\lim_{x\to 0} \frac{\int_0^{x^2} \sin\sqrt{t} dt}{x^3}$$
.

(ii) If $\sum a_n$ is an absolutely convergent series of real numbers, prove that $\sum \frac{a_n x^n}{1+x^{2n}}$ is absolutely convergent.

3+2

 $(10 \times 1 = 10)$

f) Prove that a power series can be integrated term by term on any closed and bounded interval contained within the interval of convergence.

3. Answer any one of the following questions:

a) (i) If $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ are both continuous on [a,b] and $\int_a^b |f-g| dx = 0$, then prove that f(x) = g(x) on [a,b].

Also give an example of functions f and g both integrable on [a,b] such that $\int_a^b |f - g| dx = 0$, but $f \neq q$.

- (ii) Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ x^2, & \text{if } x \text{ is irrational.} \end{cases}$
- Is f Darboux integrable on [0,1]?
- (iii) Show that $\log(1 x) + \log(1 + x) + \log(1 + x^2) + \log(1 + x^4) + \cdots$ converges for |x| < 1. 4 + 3 + 3

b) (i) Show that
$$\frac{\pi^3}{24\sqrt{2}} < \int_0^{\frac{\pi}{2}} \frac{x^2}{sinx+cosx} dx < \frac{\pi^3}{24}$$
.
(ii) Examine the convergence of $\int_0^{\frac{\pi}{2}} sin^{m-1}xcos^{n-1}x dx$. 5+5