SP-III/Mathematics/301C-1C(T)/19

B.Sc. Semester III (General) Examination, 2018-19 MATHEMATICS

Course ID : 32118

Course Code : SPMTH-301C-1C(T)

Course Title : Algebra

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- **1.** Answer *any five* questions:
 - (a) Find the modulus and amplitude of $\frac{3+5i}{2-3i}$.
 - (b) If *a*, *b*, *c* be positive real numbers, prove that

 $(a^{2}b + b^{2}c + c^{2}a)(ab^{2} + bc^{2} + ca^{2}) \ge 9a^{2}b^{2}c^{2}.$

- (c) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$ ($d \neq 0$) show that $\alpha = -\frac{8d}{3c}$.
- (d) A relation *R* is defined on the set \mathbb{Z} by "*aRb* if and only if ab > 0" for $a, b \in \mathbb{Z}$. Examine if *R* is an equivalence relation.

(e) Find the dimension of the subspace S of \mathbb{R}^3 where $S = \{(x, y, z): 2x + y - z = 0\}$.

- (f) Let $f, g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 3x^2 5$ and $g(x) = \frac{x}{x^2 + 1}$. Then find fog and gof.
- (g) Find x such that the rank of $A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & x & 2 \\ 4 & 0 & x+2 \end{pmatrix}$ is 2.
- (h) Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.
- 2. Answer any four questions:
 - (a) If *a*, *b*, *c*, *d* be distinct positive real numbers and S = a + b + c + d then prove that $\frac{S}{S-a} + \frac{S}{S-b} + \frac{S}{S-c} + \frac{S}{S-d} > 5\frac{1}{3}.$
 - (b) For what values of *K*, the following equations

x + y + z = 1, 2x + y + 4z = K, $4x + y + 10z = K^2$, have solutions and completely in each case.

(c) Solve the equation $2x^4 - 5x^3 - 15x^2 + 10x + 8 = 0$, the roots being in geometric progression.

10448

Full Marks: 40

 $5 \times 4 = 20$

 $2 \times 5 = 10$

SP-III/Mathematics/301C-1C(T)/19 (2)

- (d) (i) If a is prime to b, prove that a + b is prime to ab.
 - (ii) Prove that the product of any three consecutive integers is divisible by 6. 2+3=5
- (e) (i) Show that \mathbb{N} and \mathbb{Z} have the same cardinality.
 - (ii) Let A, B be both finite sets of n elements and a mapping $f: A \rightarrow B$ is injective. Prove that f is a bijection. 3+2=5
 - (f) Find the eigenvalues and the corresponding eigen vectors of the matrix

$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$$

3. Answer *any one* question:

- (a) (i) Solve: $x^3 12x + 65 = 0$
 - (ii) Use the theory of Congruences to show that $7|(2^{5n+3} + 5^{2n+3})$ for all positive integer *n*.

 $10 \times 1 = 10$

- (iii) Apply Descartes' rule of signs to find the nature of the roots of the equation $2x^4 + 14x^2 + 7x - 8 = 0$ 4+3+3=10
- (b) (i) Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ and find A^{-1} . 2+3=5
 - (ii) State first principle of induction and using this principle prove that $2^n < n!$ for $n \in \mathbb{N}$ and $n \ge 4$. 2+3=5