B.SC. THIRD SEMESTER (PROGRAMME) EXAMINATIONS, 2021

Subject: Mathematics

Course Title: Algebra

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:

a) Using Principle of Mathematical Induction, prove that $3^{2n-1} + 2^{n+1}$ is divisible by 7 for all natural number *n*.

b) Prove that
$$\frac{(n+1)^n}{2^n} > n!$$

- c) Find the values of i^i
- d) Apply Descartes' rule of sign to examine the nature of roots of the equation

$$x^6 + 4x^4 + 2x^2 + 4x + 1 = 0.$$

- e) State fundamental theorem of classical algebra.
- f) Find the dimension of the subspace W of R^3 defined by

 $W = \{(x, y, z) \in R^3 : x + y + z = 0\}.$

g) Determine the rank of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{bmatrix}$$

h) Use Cayley-Hamilton theorem to compute A^{-1} where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$

2. Answer any four of the following questions:

- a) If $\alpha = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ and if p is prime to n, prove that $1 + \alpha^p + \alpha^{2p} + \dots + \alpha^{(n-1)p} = 0.$
- **b)** If α be a root of the equation $x^3 3x 1 = 0$, prove that the other roots are $2 \alpha^2$ and $\alpha^2 - \alpha - 2$.
- c) How many different relations can be defined on a set with *n* elements? How many of these are reflexive?
 3+2
- **d)** Determine the conditions for which the system of equations has (a) only one solution, (b) no solution, (c) many solution

(5x4=20)

Course ID: 32118

Course Code: SP/MTH/301/C-1C

Time: 2 Hour

(2x5=10)

$$x + y + z = 1$$
$$x + 2y - z = b$$
$$5x + 7y + az = b^{2}.$$

e) Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (1,0,0), (0,1,0), (0,0,1) of \mathbb{R}^3 to the vectors (1,1), (2,3), (3,2) of \mathbb{R}^2 respectively. Hence find T(6,1,1).

f) Find the eigen values and the corresponding eigen vectors of the real matrix

[2	0	01
$\begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}$	3	0 0 5
Lo	0	5]

3. Answer any one of the following questions:

 $(10 \times 1 = 10)$

a) (i) Find the least positive residue in $2^{41} (mod \ 23)$

(ii) If *n* be a positive integer, prove that $\frac{1}{2\sqrt{(n+1)}} < \frac{1.3.5....(2n-1)}{2.4.6....2n} < \frac{1}{\sqrt{(2n+1)}}$

(iii) Solve by Cardan's method $x^3 - 27x - 54 = 0$.

b)

(i) In R^2 , $\alpha = (3,1)$, $\beta = (2,-1)$. Determine $L\{\alpha,\beta\}$ and hence show that $L\{\alpha,\beta\} = R^2$.

(ii) If α is an eigen value of a real orthogonal matrix A, then prove that $\frac{1}{\alpha}$ is also an eigen value of A.

(iii) Obtain the fully reduced normal form of the matrix

$$\begin{pmatrix} 2 & 4 & 1 & 0 \\ 1 & 2 & 0 & 3 \\ 3 & 6 & 2 & 5 \end{pmatrix}$$

3+3+4=10

2+4+4