B.SC. SECOND SEMESTER (PROGRAMME) EXAMINATIONS, 2021

Subject: Mathematics

Course Code: SP/MTH/201/C-1B

Course Title: Real Analysis

Course ID: 22118

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

- 1. Answer any five questions :
 - (a) Let S = (0, 1] and $T = \left\{\frac{1}{n} : n = 1, 2, 3, ...\right\}$. Show that S T is an open set.
 - (b) Determine the limit of the sequence $\left\{\frac{n^2+1}{n^2}\right\}$.
 - (c) If $\{|u_n|\}$ is a null sequence then show that $\{u_n\}$ is also a null sequence.
 - (d) Prove that $lim \frac{1+\frac{1}{3}+\frac{1}{5}+\dots+\frac{1}{2n+1}}{2n+1} = 0.$
 - (e) Examine whether the following sets are compact or not: (0,1), [0,1].
 - (f) Test the convergence of the series $\frac{1}{1.2^2} + \frac{1}{2.3^2} + \frac{1}{3.4^2} + \cdots$
 - (g) Give an example of a sequence which is bounded but not convergent.
 - (h) Show that the set $\mathbb{Z} \times \mathbb{Z}$ is countable.

2. Answer any four questions:

- (a) (i) Define limit point of a set. Let S = {x₁, x₂, ..., x_n} be a finite subset of ℝ, show that S has no limit point.
 - (ii) Is least upper bound axiom true for the set of all rational numbers? Justify it. 3+2

(b) (i) Use Cauchy's general principle of convergence to prove that the sequence $\{\frac{n}{n+1}\}$ is convergent.

- (ii) Use Sandwich theorem to prove that $lim(\sqrt{n+1} \sqrt{n}) = 0.$ 3+2
- (c) (i) State Leibnitz's test on alternating series. Use Leibnitz's test to show that the series

$$1 - \frac{1}{2} + \frac{1.3}{2.4} - \frac{1.3.5}{2.4.6} + \dots \text{ is convergent.}$$
(ii) Prove that $m \frac{1}{n} \{ (a+1)(a+2) \dots (a+n) \}^{\frac{1}{n}} = \frac{1}{e}$, if $a > 0$. 3+2

(d) (i) State Bolzano-Weiestrass theorem and verify for the set $S = \{1 + \frac{(-1)^n}{n} : n \in \mathbb{N}\}$. (ii) Let A, B be two subsets of \mathbb{R} . Then show that $(A \cap B)^o = A^o \cap B^o$. 3+2

5×4=20

Time: 2 Hours

2×5=10

- (e) (i) Let S be a non-empty bounded subset of \mathbb{R} with $\sup S = M$ and $\inf S = m$. Prove that the set $A = \{|x y| : x, y \in S\}$ is bounded above with $\sup A = M m$.
 - (ii) Prove that the union of an infinite number of closed sets in $\mathbb R$ is not a closed set. 3+2
- (f) (i) Give an example of a monotone increasing sequence.

(ii) Test the convergence of the series $1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots$. 1+4

10×1=10

2+3+3+2

- 3. Answer any one question:
 - (a) (i) Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{3}$ and $u_{n+1} = \sqrt{3u_n}$ for $n \ge 1$, converges to 3.
 - (ii) Find $limsup\{x_n\}$ and $liminf\{x_n\}$ where $x_n = (-1)^n \left(1 + \frac{1}{n}\right)$.

(iii) Show that the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ is conditionally convergent. 5+2+3

(b) (i) If a series $\sum u_n$ converges then show that $\lim u_n = 0$.

(ii) If a sequence $\{x_n\}$ converges to l then prove that every subsequence of $\{x_n\}$ is also convergent to l.

(iii) State the Archimedean property of $\mathbb R$ and using Archimedean

property show that for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $\frac{1}{k} < \epsilon$.

(iv) Show that a finite set has no limit point.
